1 Nuclear Physics

1.1 Formulas

Check chapter 15 formulas

1.2 Half-Life of Radioactive Substance Problem

Suppose that you start with 1.23 g of a pure radioactive substance and determine 4 h later that only 0.076875 g of the substance is left undecayed.

What is the half-life of this substance? Answer in units of h.

1.3 Radioactive Sample Activity Problem

A sample of radioactive isotope is found to have an activity of 115 Bq immediately after it is pulled from the reactor that formed the isotope. Its activity 2 h, 15 min later is measured to be 85.2 Bq.

(a) Find the decay constant of the sample. Answer in units of h^{-1} .

(b) Find the half-life of the sample. Answer in units of h.

(c) How many radioactive nuclei were there in the sample initially?

1.4 Rubidium Isotope Problem

The rubidium isotope ^{87}Rb is a β emitter with a half life of 4.9×10^{10} y that decays into ^{87}Sr . It is used to determine the age of rocks and fossils. Rocks containing the fossils of early animals contain a ratio of ^{87}Sr to ^{87}Rb of 0.01.

Assuming that there was no 87 Sr present when the rocks were formed, calculate the age of these fossils. Answer in units of y.

1.5 Reduced Activity of Sample Problem

A 200 mCi sample of a radioactive isotope is purchased by a medical supply house.

If the sample has a half-life of 14 d, how long will it keep before its activity is reduced to 20 mCi?

Answer in units of d.

1.6 Carbon Dating Charcoal Problem

A piece of charcoal used for cooking is found at the remains of an ancient campsite. A 1 kg sample of carbon from the wood has an activity of 2000 decays per minute.

Find the age of the charcoal. Living material has an activity of 15 decays/minute per gram of carbon present and the half-life of 14 C is 5730 y.

Answer in units of y.